Install the app

Install this application on your home screen for quick and easy access when you’re on the go.

Just tap Share then “Add to Home Screen”


Install the app

Install this application on your home screen for quick and easy access when you’re on the go.

Just tap Share then “Add to Home Screen”

Your subscription could not be saved. Please try again.
Your subscription to the ECPR Methods School offers and updates newsletter has been successful.

Discover ECPR's Latest Methods Course Offerings

We use Brevo as our email marketing platform. By clicking below to submit this form, you acknowledge that the information you provided will be transferred to Brevo for processing in accordance with their terms of use.


Introduction to R

Member rate £492.50
Non-Member rate £985.00

Save £45 Loyalty discount applied automatically*
Save 5% on each additional course booked

*If you attended our Methods School in July/August 2023 or February 2024.

Course Dates and Times

Monday 6 – Friday 10 February 2023
Minimum 2 hours of live teaching per day
13:00 – 15:30 CET on Monday, Tuesday, Wednesday and Friday
13:45 – 16:15 CET on Thursday

Akos Mate

Centre for Social Sciences

This in-person course provides a highly interactive blended learning environment, using state-of-the-art in-person pedagogical tools. You will have access to online videos and tools before the course. It is designed for a demanding audience (researchers, professional analysts, advanced students) and capped at a maximum of 16 participants so that the teaching team can cater to the specific needs of each individual.

Purpose of the course

By the end of this course, you will be able to approach the most common analysis tasks in R with confidence. The aim is to provide an accessible entry into the world of R and show how a range of recent developments make R not just powerful, but accessible to newcomers.

We will cover data cleaning, exploratory data analysis, creating visualisations, and writing entire academic papers using RMarkdown. 

ECTS Credits

3 credits Engage fully with class activities
4 credits Complete a post-class assignment

Instructor Bio

Akos Mate is a research fellow at the Centre for Social Sciences in Hungary. His key research area is the political economy of the European Union and its members’ fiscal governance.

He uses a wide variety of methods in his research, particularly automated text analysis (and attached various machine learning approaches), network analysis and more traditional econometric techniques.


Key topics covered

The guiding logic of the course is to give practical knowledge of the whole data analysis workflow:

Monday – Importing data
Tuesday – Data wrangling / cleaning
Wednesday – Visualisation | Exploratory analysis
Thursday – Analysis | Writing our own functions
Friday – Reporting the results

R can read in any file format. We will cover a range of the most commonly used types, including plain txt, csv, Excel xlsx, Stata, Sas, and SPSS.

Reflecting on the realities of typical research projects, the course focuses on data cleaning and getting data into a shape which allows us to analyse and visualise it properly. The exploratory analysis and data visualisation parts are closely intertwined. 

You will learn how to make descriptive statistics, how to group data, and how to explore a given dataset. The course puts strong emphasis on visualisation components, and you will learn to use the ggplot2 package to produce wonderful looking graphs (as an example, most of the Financial Times' charts are made with R in ggplot2). 

When learning a programming language, it is inevitable we learn to write our own functions. This is not hugely intuitive, so this course makes it as accessible as possible, with minimal programming jargon. Alongside this, we’ll look at a few statistical applications in R (t-test and OLS regression).

At the end of the course, you will export your results from R or even write an academic paper or report using RMarkdown.

How the course will work

We offer a number of online pre-course materials for you to access at your own pace.

Pre-recorded videos help you start exploring R before the live sessions. You can keep all course materials for future reference. The videos will walk you through how to make a local install of R Studio.

During the course week, expect to be in class on campus for over ten hours in total. The Instructors will host Q&A sessions and will designate ‘office hours’, during which you can sign up for a quick one-to-one consultation.

This course assumes no knowledge of R, or of any other programming language. One short reading is required.